Synaptic transmission and plasticity at inputs to murine cerebellar Purkinje cells are largely dispensable for standard nonmotor tasks.
نویسندگان
چکیده
In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex.
منابع مشابه
Differential susceptibility to synaptic plasticity reveals a functional specialization of ascending axon and parallel fiber synapses to cerebellar Purkinje cells.
Granule cell axons, via their parallel fibers, form synapses with Purkinje cells across large areas of the cerebellar cortex. Evidence for uniform transmission along parallel fibers to Purkinje cells is controversial, however, leading to speculation that the ascending axonal segment plays a dominant role in cerebellar processing. We have compared the relative susceptibilities of ascending axon ...
متن کاملThe organization of plasticity in the cerebellar cortex: from synapses to control.
The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These includ...
متن کاملLinking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells.
Understanding the relationship between synaptic plasticity and neuronal output is essential if we are to understand how plasticity is encoded in neural circuits. In the cerebellar cortex, motor learning is thought to be implemented by long-term depression (LTD) of excitatory parallel fiber (PF) to Purkinje cell synapses triggered by climbing fiber (CF) input. However, theories of motor learning...
متن کاملLocalization of Presynaptic Plasticity Mechanisms Enables Functional Independence of Synaptic and Ectopic Transmission in the Cerebellum
In the cerebellar molecular layer parallel fibre terminals release glutamate from both the active zone and from extrasynaptic "ectopic" sites. Ectopic release mediates transmission to the Bergmann glia that ensheathe the synapse, activating Ca(2+)-permeable AMPA receptors and glutamate transporters. Parallel fibre terminals exhibit several forms of presynaptic plasticity, including cAMP-depende...
متن کاملThe linear computational algorithm of cerebellar Purkinje cells.
The orchestration of simple motor tasks by the cerebellum results in coordinated movement and the maintenance of balance. The cerebellum integrates sensory and cortical information to generate the signals required for the coordinated execution of simple motor tasks. These signals originate in the firing rate of Purkinje cells, each of which integrates sensory and cortical information conveyed b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 31 شماره
صفحات -
تاریخ انتشار 2013